本文重新讨论了一个非常简单但非常有效的计算范式,深度共同学习(DML)。我们观察到,有效性与其出色的概括质量高度相关。在本文中,我们从新的角度来解释了DML的性能改善,即这大约是贝叶斯后的采样程序。这也为应用R \'{e} nyi Divergence改善原始DML的基础建立了基础,因为它带来了先验的差异控制(在DML的上下文中)。因此,我们提出了r \'{e} nyi Divergence深度共同学习(RDML)。我们的经验结果代表了DML和\ renyi {}差异的婚姻的优势。R \'{E} nyi Divergence施加的灵活控制能够进一步改进DML,以学习更好的广义模型。
translated by 谷歌翻译
尽管在情感分析方面取得了巨大的成功,但现有的神经模型在隐式情感分析中挣扎。这可能是由于它们可能会锁定虚假的相关性(例如,“捷径”,例如,仅关注明确的情感词),从而破坏了学习模型的有效性和鲁棒性。在这项工作中,我们提出了一种使用仪器变量(ISAIV)的因果干预模型,用于隐式情感分析。我们首先从因果角度审查情感分析,并分析此任务中存在的混杂因素。然后,我们引入了一个仪器变量,以消除混杂的因果效应,从而在句子和情感之间提取纯粹的因果效应。我们将所提出的ISAIV模型与几个强大的基线进行比较,同时是一般的隐式情感分析和基于方面的隐式情感分析任务。结果表明我们模型的巨大优势以及隐性情感推理的功效。
translated by 谷歌翻译
动物姿势估计和跟踪(APT)是从一系列视频帧中检测和跟踪动物关键的基本任务。以前与动物有关的数据集专注于动物跟踪或单帧动物姿势估计,而从未在这两个方面上进行。缺乏APT数据集​​阻碍了基于视频的动物姿势估计和跟踪方法的开发和评估,限制了现实世界中的应用,例如了解野生动物保护中的动物行为。为了填补这一空白,我们迈出了第一步,并提出了APT-36K,即第一个用于动物姿势估计和跟踪的大规模基准。具体而言,APT-36K由2,400个视频剪辑组成,并从30种动物物种中收集并过滤,每个视频为15帧,总共产生36,000帧。在手动注释和仔细的双重检查之后,为所有动物实例提供了高质量的关键点和跟踪注释。基于APT-36K,我们在以下三个曲目上基准了几个代表性模型:(1)在内部和域间传输学习设置下,在单个框架上进行监督的动物姿势估计,(2)未见的种间域域内概括测试动物,(3)动物跟踪的动物姿势估计。根据实验结果,我们获得了一些经验见解,并表明APT-36K提供了有价值的动物姿势估计和跟踪基准,为未来的研究提供了新的挑战和机会。该代码和数据集将在https://github.com/pandorgan/apt-36k上公​​开提供。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
As one of the most important psychic stress reactions, micro-expressions (MEs), are spontaneous and transient facial expressions that can reveal the genuine emotions of human beings. Thus, recognizing MEs (MER) automatically is becoming increasingly crucial in the field of affective computing, and provides essential technical support in lie detection, psychological analysis and other areas. However, the lack of abundant ME data seriously restricts the development of cutting-edge data-driven MER models. Despite the recent efforts of several spontaneous ME datasets to alleviate this problem, it is still a tiny amount of work. To solve the problem of ME data hunger, we construct a dynamic spontaneous ME dataset with the largest current ME data scale, called DFME (Dynamic Facial Micro-expressions), which includes 7,526 well-labeled ME videos induced by 671 participants and annotated by more than 20 annotators throughout three years. Afterwards, we adopt four classical spatiotemporal feature learning models on DFME to perform MER experiments to objectively verify the validity of DFME dataset. In addition, we explore different solutions to the class imbalance and key-frame sequence sampling problems in dynamic MER respectively on DFME, so as to provide a valuable reference for future research. The comprehensive experimental results show that our DFME dataset can facilitate the research of automatic MER, and provide a new benchmark for MER. DFME will be published via https://mea-lab-421.github.io.
translated by 谷歌翻译
Interview has been regarded as one of the most crucial step for recruitment. To fully prepare for the interview with the recruiters, job seekers usually practice with mock interviews between each other. However, such a mock interview with peers is generally far away from the real interview experience: the mock interviewers are not guaranteed to be professional and are not likely to behave like a real interviewer. Due to the rapid growth of online recruitment in recent years, recruiters tend to have online interviews, which makes it possible to collect real interview data from real interviewers. In this paper, we propose a novel application named EZInterviewer, which aims to learn from the online interview data and provides mock interview services to the job seekers. The task is challenging in two ways: (1) the interview data are now available but still of low-resource; (2) to generate meaningful and relevant interview dialogs requires thorough understanding of both resumes and job descriptions. To address the low-resource challenge, EZInterviewer is trained on a very small set of interview dialogs. The key idea is to reduce the number of parameters that rely on interview dialogs by disentangling the knowledge selector and dialog generator so that most parameters can be trained with ungrounded dialogs as well as the resume data that are not low-resource. Evaluation results on a real-world job interview dialog dataset indicate that we achieve promising results to generate mock interviews. With the help of EZInterviewer, we hope to make mock interview practice become easier for job seekers.
translated by 谷歌翻译
Panoptic Part Segmentation (PPS) unifies panoptic segmentation and part segmentation into one task. Previous works utilize separated approaches to handle thing, stuff, and part predictions without shared computation and task association. We aim to unify these tasks at the architectural level, designing the first end-to-end unified framework named Panoptic-PartFormer. Moreover, we find the previous metric PartPQ biases to PQ. To handle both issues, we make the following contributions: Firstly, we design a meta-architecture that decouples part feature and things/stuff feature, respectively. We model things, stuff, and parts as object queries and directly learn to optimize all three forms of prediction as a unified mask prediction and classification problem. We term our model as Panoptic-PartFormer. Secondly, we propose a new metric Part-Whole Quality (PWQ) to better measure such task from both pixel-region and part-whole perspectives. It can also decouple the error for part segmentation and panoptic segmentation. Thirdly, inspired by Mask2Former, based on our meta-architecture, we propose Panoptic-PartFormer++ and design a new part-whole cross attention scheme to further boost part segmentation qualities. We design a new part-whole interaction method using masked cross attention. Finally, the extensive ablation studies and analysis demonstrate the effectiveness of both Panoptic-PartFormer and Panoptic-PartFormer++. Compared with previous Panoptic-PartFormer, our Panoptic-PartFormer++ achieves 2% PartPQ and 3% PWQ improvements on the Cityscapes PPS dataset and 5% PartPQ on the Pascal Context PPS dataset. On both datasets, Panoptic-PartFormer++ achieves new state-of-the-art results with a significant cost drop of 70% on GFlops and 50% on parameters. Our models can serve as a strong baseline and aid future research in PPS. Code will be available.
translated by 谷歌翻译
In contrast to the control-theoretic methods, the lack of stability guarantee remains a significant problem for model-free reinforcement learning (RL) methods. Jointly learning a policy and a Lyapunov function has recently become a promising approach to ensuring the whole system with a stability guarantee. However, the classical Lyapunov constraints researchers introduced cannot stabilize the system during the sampling-based optimization. Therefore, we propose the Adaptive Stability Certification (ASC), making the system reach sampling-based stability. Because the ASC condition can search for the optimal policy heuristically, we design the Adaptive Lyapunov-based Actor-Critic (ALAC) algorithm based on the ASC condition. Meanwhile, our algorithm avoids the optimization problem that a variety of constraints are coupled into the objective in current approaches. When evaluated on ten robotic tasks, our method achieves lower accumulated cost and fewer stability constraint violations than previous studies.
translated by 谷歌翻译
Surgical robot automation has attracted increasing research interest over the past decade, expecting its huge potential to benefit surgeons, nurses and patients. Recently, the learning paradigm of embodied AI has demonstrated promising ability to learn good control policies for various complex tasks, where embodied AI simulators play an essential role to facilitate relevant researchers. However, existing open-sourced simulators for surgical robot are still not sufficiently supporting human interactions through physical input devices, which further limits effective investigations on how human demonstrations would affect policy learning. In this paper, we study human-in-the-loop embodied intelligence with a new interactive simulation platform for surgical robot learning. Specifically, we establish our platform based on our previously released SurRoL simulator with several new features co-developed to allow high-quality human interaction via an input device. With these, we further propose to collect human demonstrations and imitate the action patterns to achieve more effective policy learning. We showcase the improvement of our simulation environment with the designed new features and tasks, and validate state-of-the-art reinforcement learning algorithms using the interactive environment. Promising results are obtained, with which we hope to pave the way for future research on surgical embodied intelligence. Our platform is released and will be continuously updated in the website: https://med-air.github.io/SurRoL/
translated by 谷歌翻译
In this paper, a semantic communication framework for image transmission is developed. In the investigated framework, a set of servers cooperatively transmit images to a set of users utilizing semantic communication techniques. To evaluate the performance of studied semantic communication system, a multimodal metric is proposed to measure the correlation between the extracted semantic information and the original image. To meet the ISS requirement of each user, each server must jointly determine the semantic information to be transmitted and the resource blocks (RBs) used for semantic information transmission. We formulate this problem as an optimization problem aiming to minimize each server's transmission latency while reaching the ISS requirement. To solve this problem, a value decomposition based entropy-maximized multi-agent reinforcement learning (RL) is proposed, which enables servers to coordinate for training and execute RB allocation in a distributed manner to approach to a globally optimal performance with less training iterations. Compared to traditional multi-agent RL, the proposed RL improves the valuable action exploration of servers and the probability of finding a globally optimal RB allocation policy based on local observation. Simulation results show that the proposed algorithm can reduce the transmission delay by up to 16.1% compared to traditional multi-agent RL.
translated by 谷歌翻译